Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract In scientific machine learning (SciML), a key challenge is learning unknown, evolving physical processes and making predictions across spatio-temporal scales. For example, in real-world manufacturing problems like additive manufacturing, users adjust known machine settings while unknown environmental parameters simultaneously fluctuate. To make reliable predictions, it is desired for a model to not only capture long-range spatio-temporal interactions from data but also adapt to new and unknown environments; traditional machine learning models excel at the first task but often lack physical interpretability and struggle to generalize under varying environmental conditions. To tackle these challenges, we propose the attention-based spatio-temporal neural operator (ASNO), a novel architecture that combines separable attention mechanisms for spatial and temporal interactions and adapts to unseen physical parameters. Inspired by the backward differentiation formula, ASNO learns a transformer for temporal prediction and extrapolation and an attention-based neural operator for handling varying external loads, enhancing interpretability by isolating historical state contributions and external forces, enabling the discovery of underlying physical laws and generalizability to unseen physical environments. Empirical results on SciML benchmarks demonstrate that ASNO outperforms existing models, establishing its potential for engineering applications, physics discovery, and interpretable machine learning.more » « lessFree, publicly-accessible full text available November 6, 2026
-
Free, publicly-accessible full text available August 1, 2026
-
Free, publicly-accessible full text available September 1, 2026
-
Abstract We introduce a new concept of the local flux conservation and investigate its role in the coupled flow and transports. We demonstrate how the proposed concept of the locally conservative flux can play a crucial role in obtaining the$$L^2$$ norm stability of the discontinuous Galerkin finite element scheme for the transport in the coupled system with flow. In particular, the lowest order discontinuous Galerkin finite element for the transport is shown to inherit the positivity and maximum principle when the locally conservative flux is used, which has been elusive for many years in literature. The theoretical results established in this paper are based on the equivalence between Lesaint-Raviart discontinuous Galerkin scheme and Brezzi-Marini-Süli discontinuous Galerkin scheme for the linear hyperbolic system as well as the relationship between the Lesaint-Raviart discontinuous Galerkin scheme and the characteristic method along the streamline. Sample numerical experiments have then been performed to justify our theoretical findings.more » « less
An official website of the United States government
